Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction

نویسندگان

  • Ting Gang Chew
  • Junqi Huang
  • Saravanan Palani
  • Ruth Sommese
  • Anton Kamnev
  • Tomoyuki Hatano
  • Ying Gu
  • Snezhana Oliferenko
  • Sivaraj Sivaramakrishnan
  • Mohan K Balasubramanian
چکیده

Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments

The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriente...

متن کامل

Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast.

Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast S...

متن کامل

Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring

We created two new mutants of fission yeast cofilin to investigate why cytokinesis in many organisms depends on this small actin-binding protein. These mutant cofilins bound actin monomers normally, but bound and severed ADP-actin filaments much slower than wild-type cofilin. Cells depending on mutant cofilins condensed nodes, precursors of the contractile ring, into clumps rather than rings. S...

متن کامل

Fimbrin and Tropomyosin Competition Regulates Endocytosis and Cytokinesis Kinetics in Fission Yeast

BACKGROUND Tropomyosin is an important actin filament-stabilizing protein that controls the access of other essential proteins to filaments, including myosin motors, Arp2/3 complex, formin, and cofilin. It is therefore critical to establish mechanisms for regulating the actin filament binding of tropomyosin. We examined how the actin filament crosslinking protein fimbrin Fim1p and tropomyosin C...

متن کامل

Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis.

Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017